On quasi-transitive amenable graphs

نویسنده

  • Gábor Elek
چکیده

In this note we use the term graph for simple, connected, undirected graphs with bounded degree vertices only. We will mostly consider infinite graphs. We denote the set of vertices of a graph G by V (G), we use E(G) for the set of edges. By ~ E(G) we denote the set of oriented edges: ~ E(G) = {(x, y) | {x, y} ∈ E(G)}. We denote the opposite orientation (y, x) of an oriented edge e = (x, y) by ē. We consider the Hilbert space l2(G) of the l2 functions u : ~ E(G) → IR satisfying u(ē) = −u(e) with the scalar product 〈u, u 〉 = 1/2 ∑ e∈ ~ E(G) u(e)u (e). For simplicity we write u(x, y) for the value u((x, y)). For a function v : V (G) → IR we define its differential dv : ~ E(G) → IR by dv(x, y) = v(y) − v(x). We call a v : V (G) → IR function a Dirichlet function if dv ∈ l2(G) and denote the set of Dirichlet functions by D(G). Let l2(V (G)) denote the Hilbert space of the l2 functions v : V (G) → IR (with the standard scalar product), this is clearly contained in D(G). Consider the adjoint d of the operator d : l2(V (G)) → l2(G). We call a function u ∈ l2(G) a flow if d u = 0. We call a Dirichlet function v ∈ D(G) harmonic if dv is a flow. We denote the set of harmonic Dirichlet functions by HD(G). Here du is given by du(x) = ∑ {y,x}∈E(G) u(y, x) for u ∈ l2(G) and x ∈ V (G). Thus a u is a flow if and only if ∑ {x,y}∈E(G) u(x, y) = 0 for every x ∈ V . The function v ∈ D(G) is harmonic if and only if for every x ∈ V the value v(x) is the average of the values v(y) with {x, y} ∈ E(G). All constant functions V (G) → IR are harmonic Dirichlet functions. For vertices x and y of a graph G let δ(x, y) denote their distance in G. A wobbling is a map f : V (G) → V (G) such that δ(x, f(x)) for x ∈ V (G) is bounded. The map f : V (G) → V (G) is called a quasi-isomorphism from G to G if there exits a positive number k—the distortion of f—such that for vertices x and y in V (G) one has

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Roughly Transitive Amenable Graphs and Harmonic Dirichlet Functions

We introduce the notion of rough transitivity and prove that there exist no non-constant harmonic Dirichlet functions on amenable roughly transitive graphs.

متن کامل

Product of normal edge-transitive Cayley graphs

For two normal edge-transitive Cayley graphs on groups H and K which have no common direct factor and $gcd(|H/H^prime|,|Z(K)|)=1=gcd(|K/K^prime|,|Z(H)|)$, we consider four standard products of them and it is proved that only tensor product of factors can be normal edge-transitive.

متن کامل

On the eigenvalues of normal edge-transitive Cayley graphs

A graph $Gamma$ is said to be vertex-transitive or edge‎- ‎transitive‎ ‎if the automorphism group of $Gamma$ acts transitively on $V(Gamma)$ or $E(Gamma)$‎, ‎respectively‎. ‎Let $Gamma=Cay(G,S)$ be a Cayley graph on $G$ relative to $S$‎. ‎Then, $Gamma$ is said to be normal edge-transitive‎, ‎if $N_{Aut(Gamma)}(G)$ acts transitively on edges‎. ‎In this paper‎, ‎the eigenvalues of normal edge-tra...

متن کامل

Two-geodesic transitive graphs of prime power order

In a non-complete graph $Gamma$, a vertex triple $(u,v,w)$ with $v$ adjacent to both $u$ and $w$ is called a $2$-geodesic if $uneq w$ and $u,w$ are not adjacent. The graph $Gamma$ is said to be   $2$-geodesic transitive if its automorphism group is transitive on arcs, and also on 2-geodesics. We first produce a reduction theorem for the family of $2$-geodesic transitive graphs of prime power or...

متن کامل

Critical percolation on certain nonunimodular graphs

An important conjecture in percolation theory is that almost surely no infinite cluster exists in critical percolation on any transitive graph for which the critical probability is less than 1. Earlier work has established this for the amenable cases Z and Z for large d, as well as for all non-amenable graphs with unimodular automorphism groups. We show that the conjecture holds for several cla...

متن کامل

Normal edge-transitive Cayley graphs on the non-abelian groups of order $4p^2$, where $p$ is a prime number

In this paper, we determine all of connected normal edge-transitive Cayley graphs on non-abelian groups with order $4p^2$, where $p$ is a prime number.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998